Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Am J Respir Crit Care Med ; 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2228308

ABSTRACT

RATIONALE: There are limited therapeutic options for patients with COVID-19-related acute respiratory distress syndrome (ARDS) with inflammation-mediated lung injury. Mesenchymal stromal cells offer promise as immunomodulatory agents. OBJECTIVES: Evaluation of efficacy and safety of allogeneic mesenchymal cells in mechanically-ventilated patients with moderate or severe COVID-induced respiratory failure. METHODS: Patients were randomized to two infusions of 2 million cells/kg or sham infusions, in addition to standard of care. We hypothesized that cell therapy would be superior to sham-control for the primary endpoint of 30-day mortality. The key secondary endpoint was ventilator-free survival within 60 days, accounting for deaths and withdrawals in a ranked analysis. MEASUREMENTS AND MAIN RESULTS: At the third interim analysis, the Data and Safety Monitoring Board recommended that the trial halt enrollment as the pre-specified mortality reduction from 40% to 23% was unlikely to be achieved (n=222 out of planned 300). Thirty-day mortality was 37.5% (42/112) in cell recipients versus 42.7% (47/110) in control patients (RR 0.88;95% CI 0.64,1.21;p=0.43). There were no significant differences in days alive off ventilation within 60 days (median rank 117.3 [IQR:60.0,169.5] in cell patients and 102.0 [IQR:54.0,162.5] in controls; higher is better). Resolution or improvement of ARDS at 30-days was observed in 51/104 (49.0%) cell recipients and 46/106 (43.4%) of control patients (OR 1.36;95% CI 0.57, 3.21). There were no infusion-related toxicities and overall serious adverse events over 30 days were similar. CONCLUSIONS: Mesenchymal cells, while safe, did not improve 30-day survival or 60-day ventilator-free days in patients with moderate/severe COVID-related acute respiratory distress syndrome. Clinical trial registration available at www. CLINICALTRIALS: gov, ID:NCT04371393. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
J Gen Intern Med ; 37(7): 1748-1753, 2022 05.
Article in English | MEDLINE | ID: covidwho-1859102

ABSTRACT

BACKGROUND: Patients who have had COVID-19 often report persistent symptoms after resolution of their acute illness. Recent reports suggest that vaccination may be associated with improvement in post-acute symptoms. We used data from a prospective cohort to assess differences in post-acute sequelae of COVID (PASC) among vaccinated vs. unvaccinated patients. METHODS: We used data from a cohort of COVID-19 patients enrolled into a prospective registry established at a tertiary care health system in New York City. Participants underwent a baseline evaluation before COVID-19 vaccines were available and were followed 6 months later. We compared unadjusted and propensity score-adjusted baseline to 6-month change for several PASC-related symptoms and measures: anosmia, respiratory (cough, dyspnea, phlegm, wheezing), depression, anxiety, post-traumatic stress disorder (PTSD; COVID-19-related and other trauma), and quality-of-life domains among participants who received vs. those who did not receive COVID-19 vaccination. RESULTS: The study included 453 COVID-19 patients with PASC, of which 324 (72%) were vaccinated between the baseline and 6-month visit. Unadjusted analyses did not show significant differences in the baseline to 6-month change in anosmia, respiratory symptoms, depression, anxiety, PTSD, or quality of life (p > 0.05 for all comparisons) among vaccinated vs. unvaccinated patients. Similar results were found in propensity-adjusted comparisons and in secondary analyses based on the number of vaccine doses received. CONCLUSIONS: Our findings suggest that COVID vaccination is not associated with improvement in PASC. Additional studies are needed to better understand the mechanisms underlying PASC and to develop effective treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Anosmia , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Disease Progression , Humans , Quality of Life , Vaccination
3.
J Am Coll Cardiol ; 79(9): 917-928, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1706820

ABSTRACT

Clinical, laboratory, and autopsy findings support an association between coronavirus disease-2019 (COVID-19) and thromboembolic disease. Acute COVID-19 infection is characterized by mononuclear cell reactivity and pan-endothelialitis, contributing to a high incidence of thrombosis in large and small blood vessels, both arterial and venous. Observational studies and randomized trials have investigated whether full-dose anticoagulation may improve outcomes compared with prophylactic dose heparin. Although no benefit for therapeutic heparin has been found in patients who are critically ill hospitalized with COVID-19, some studies support a possible role for therapeutic anticoagulation in patients not yet requiring intensive care unit support. We summarize the pathology, rationale, and current evidence for use of anticoagulation in patients with COVID-19 and describe the main design elements of the ongoing FREEDOM COVID-19 Anticoagulation trial, in which 3,600 hospitalized patients with COVID-19 not requiring intensive care unit level of care are being randomized to prophylactic-dose enoxaparin vs therapeutic-dose enoxaparin vs therapeutic-dose apixaban. (FREEDOM COVID-19 Anticoagulation Strategy [FREEDOM COVID]; NCT04512079).


Subject(s)
Anticoagulants/therapeutic use , COVID-19/complications , Thromboembolism/prevention & control , Thrombosis/prevention & control , COVID-19/therapy , Critical Care , Enoxaparin/therapeutic use , Hospitalization , Humans , Pyrazoles/therapeutic use , Pyridones/therapeutic use , Thromboembolism/virology , Thrombosis/virology
7.
J Med Internet Res ; 22(11): e24018, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-979821

ABSTRACT

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Machine Learning/standards , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cohort Studies , Electronic Health Records , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Hospitals , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Prognosis , ROC Curve , Risk Assessment/methods , Risk Assessment/standards , SARS-CoV-2 , Young Adult
8.
BMJ Open ; 10(11): e040736, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-947830

ABSTRACT

OBJECTIVE: The COVID-19 pandemic is a global public health crisis, with over 33 million cases and 999 000 deaths worldwide. Data are needed regarding the clinical course of hospitalised patients, particularly in the USA. We aimed to compare clinical characteristic of patients with COVID-19 who had in-hospital mortality with those who were discharged alive. DESIGN: Demographic, clinical and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed COVID-19 between 27 February and 2 April 2020 were identified through institutional electronic health records. We performed a retrospective comparative analysis of patients who had in-hospital mortality or were discharged alive. SETTING: All patients were admitted to the Mount Sinai Health System, a large quaternary care urban hospital system. PARTICIPANTS: Participants over the age of 18 years were included. PRIMARY OUTCOMES: We investigated in-hospital mortality during the study period. RESULTS: A total of 2199 patients with COVID-19 were hospitalised during the study period. As of 2 April, 1121 (51%) patients remained hospitalised, and 1078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 µg/mL, C reactive protein was 162 mg/L and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 µg/mL, C reactive protein was 79 mg/L and procalcitonin was 0.09 ng/mL. CONCLUSIONS: In our cohort of hospitalised patients, requirement of intensive care and mortality were high. Patients who died typically had more pre-existing conditions and greater perturbations in inflammatory markers as compared with those who were discharged.


Subject(s)
COVID-19/blood , Critical Care , Hospital Mortality , Hospitalization , Pandemics , Adolescent , Adult , Aged , Aged, 80 and over , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/mortality , Comorbidity , Critical Care/statistics & numerical data , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hospitals , Humans , Lymphocytes/metabolism , Male , Middle Aged , New York City/epidemiology , Procalcitonin/blood , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult
9.
J Am Coll Cardiol ; 76(16): 1815-1826, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-849705

ABSTRACT

BACKGROUND: Thromboembolic disease is common in coronavirus disease-2019 (COVID-19). There is limited evidence on the association of in-hospital anticoagulation (AC) with outcomes and postmortem findings. OBJECTIVES: The purpose of this study was to examine association of AC with in-hospital outcomes and describe thromboembolic findings on autopsies. METHODS: This retrospective analysis examined the association of AC with mortality, intubation, and major bleeding. Subanalyses were also conducted on the association of therapeutic versus prophylactic AC initiated ≤48 h from admission. Thromboembolic disease was contextualized by premortem AC among consecutive autopsies. RESULTS: Among 4,389 patients, median age was 65 years with 44% women. Compared with no AC (n = 1,530; 34.9%), therapeutic AC (n = 900; 20.5%) and prophylactic AC (n = 1,959; 44.6%) were associated with lower in-hospital mortality (adjusted hazard ratio [aHR]: 0.53; 95% confidence interval [CI]: 0.45 to 0.62 and aHR: 0.50; 95% CI: 0.45 to 0.57, respectively), and intubation (aHR: 0.69; 95% CI: 0.51 to 0.94 and aHR: 0.72; 95% CI: 0.58 to 0.89, respectively). When initiated ≤48 h from admission, there was no statistically significant difference between therapeutic (n = 766) versus prophylactic AC (n = 1,860) (aHR: 0.86; 95% CI: 0.73 to 1.02; p = 0.08). Overall, 89 patients (2%) had major bleeding adjudicated by clinician review, with 27 of 900 (3.0%) on therapeutic, 33 of 1,959 (1.7%) on prophylactic, and 29 of 1,530 (1.9%) on no AC. Of 26 autopsies, 11 (42%) had thromboembolic disease not clinically suspected and 3 of 11 (27%) were on therapeutic AC. CONCLUSIONS: AC was associated with lower mortality and intubation among hospitalized COVID-19 patients. Compared with prophylactic AC, therapeutic AC was associated with lower mortality, although not statistically significant. Autopsies revealed frequent thromboembolic disease. These data may inform trials to determine optimal AC regimens.


Subject(s)
Anticoagulants , Autopsy/statistics & numerical data , Coronavirus Infections , Hospitalization/statistics & numerical data , Pandemics , Pneumonia, Viral , Post-Exposure Prophylaxis , Thromboembolism , Aged , Anticoagulants/classification , Anticoagulants/therapeutic use , Betacoronavirus/isolation & purification , Blood Coagulation , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Hemorrhage/chemically induced , Hemorrhage/prevention & control , Hospital Mortality , Humans , Male , New York City/epidemiology , Outcome and Process Assessment, Health Care , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Post-Exposure Prophylaxis/methods , Post-Exposure Prophylaxis/statistics & numerical data , Risk Adjustment/methods , SARS-CoV-2 , Thromboembolism/drug therapy , Thromboembolism/mortality , Thromboembolism/prevention & control , Thromboembolism/virology
10.
Nat Med ; 26(11): 1708-1713, 2020 11.
Article in English | MEDLINE | ID: covidwho-772953

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a new human disease with few effective treatments1. Convalescent plasma, donated by persons who have recovered from COVID-19, is the acellular component of blood that contains antibodies, including those that specifically recognize SARS-CoV-2. These antibodies, when transfused into patients infected with SARS-CoV-2, are thought to exert an antiviral effect, suppressing virus replication before patients have mounted their own humoral immune responses2,3. Virus-specific antibodies from recovered persons are often the first available therapy for an emerging infectious disease, a stopgap treatment while new antivirals and vaccines are being developed1,2. This retrospective, propensity score-matched case-control study assessed the effectiveness of convalescent plasma therapy in 39 patients with severe or life-threatening COVID-19 at The Mount Sinai Hospital in New York City. Oxygen requirements on day 14 after transfusion worsened in 17.9% of plasma recipients versus 28.2% of propensity score-matched controls who were hospitalized with COVID-19 (adjusted odds ratio (OR), 0.86; 95% confidence interval (CI), 0.75-0.98; chi-square test P value = 0.025). Survival also improved in plasma recipients (adjusted hazard ratio (HR), 0.34; 95% CI, 0.13-0.89; chi-square test P = 0.027). Convalescent plasma is potentially effective against COVID-19, but adequately powered, randomized controlled trials are needed.


Subject(s)
COVID-19/pathology , COVID-19/therapy , Adult , Aged , Antibodies, Viral/blood , COVID-19/epidemiology , Case-Control Studies , Female , Humans , Immunization, Passive , Male , Middle Aged , Pandemics , Propensity Score , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome , COVID-19 Serotherapy
12.
J Am Coll Cardiol ; 76(5): 533-546, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-574585

ABSTRACT

BACKGROUND: The degree of myocardial injury, as reflected by troponin elevation, and associated outcomes among U.S. hospitalized patients with coronavirus disease-2019 (COVID-19) are unknown. OBJECTIVES: The purpose of this study was to describe the degree of myocardial injury and associated outcomes in a large hospitalized cohort with laboratory-confirmed COVID-19. METHODS: Patients with COVID-19 admitted to 1 of 5 Mount Sinai Health System hospitals in New York City between February 27, 2020, and April 12, 2020, with troponin-I (normal value <0.03 ng/ml) measured within 24 h of admission were included (n = 2,736). Demographics, medical histories, admission laboratory results, and outcomes were captured from the hospitals' electronic health records. RESULTS: The median age was 66.4 years, with 59.6% men. Cardiovascular disease (CVD), including coronary artery disease, atrial fibrillation, and heart failure, was more prevalent in patients with higher troponin concentrations, as were hypertension and diabetes. A total of 506 (18.5%) patients died during hospitalization. In all, 985 (36%) patients had elevated troponin concentrations. After adjusting for disease severity and relevant clinical factors, even small amounts of myocardial injury (e.g., troponin I >0.03 to 0.09 ng/ml; n = 455; 16.6%) were significantly associated with death (adjusted hazard ratio: 1.75; 95% CI: 1.37 to 2.24; p < 0.001) while greater amounts (e.g., troponin I >0.09 ng/dl; n = 530; 19.4%) were significantly associated with higher risk (adjusted HR: 3.03; 95% CI: 2.42 to 3.80; p < 0.001). CONCLUSIONS: Myocardial injury is prevalent among patients hospitalized with COVID-19; however, troponin concentrations were generally present at low levels. Patients with CVD are more likely to have myocardial injury than patients without CVD. Troponin elevation among patients hospitalized with COVID-19 is associated with higher risk of mortality.


Subject(s)
Cardiovascular Diseases/complications , Comorbidity , Coronavirus Infections/complications , Myocardial Infarction/complications , Myocardium/pathology , Pneumonia, Viral/complications , Troponin I/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Cardiovascular Diseases/epidemiology , Coronavirus Infections/epidemiology , Electronic Health Records , Female , Heart Injuries/complications , Heart Injuries/epidemiology , Hospitalization , Humans , Incidence , Male , Middle Aged , Myocardial Infarction/epidemiology , New York City , Pandemics , Pneumonia, Viral/epidemiology , Prevalence , Risk Factors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL